Sampling Methods: Guide To All Types with Examples

Sampling Methods

Sampling is an essential part of any research project. The right sampling method can make or break the validity of your research, and it’s essential to choose the right method for your specific question. In this article, we’ll take a closer look at some of the most popular sampling methods and provide real-world examples of how they can be used to gather accurate and reliable data.

From simple random sampling to complex stratified sampling, we’ll explore each method’s pros, cons, and best practices. So, whether you’re a seasoned researcher or just starting your journey, this article is a must-read for anyone looking to master sampling methods. Let’s get started!

  1. What is sampling?
  2. Types of sampling: sampling methods
  3. Types of probability sampling with examples:
  4. Uses of probability sampling
  5. Types of non-probability sampling with examples
  6. Uses of non-probability sampling
  7. How do you decide on the type of sampling to use?
  8. Difference between probability sampling and non-probability sampling methods
  9. Conclusion

What is sampling?

Sampling is a technique of selecting individual members or a subset of the population to make statistical inferences from them and estimate the characteristics of the whole population. Different sampling methods are widely used by researchers in market research so that they do not need to research the entire population to collect actionable insights.

It is also a time-convenient and cost-effective method and hence forms the basis of any research design . Sampling techniques can be used in research survey software for optimum derivation.

For example, suppose a drug manufacturer would like to research the adverse side effects of a drug on the country’s population. In that case, it is almost impossible to conduct a research study that involves everyone. In this case, the researcher decides on a sample of people from each demographic and then researches them, giving him/her indicative feedback on the drug’s behavior.

Types of sampling: sampling methods

Sampling in market action research is of two types – probability sampling and non-probability sampling. Let’s take a closer look at these two methods of sampling.

  1. Probability sampling:Probability sampling is a sampling technique where a researcher selects a few criteria and chooses members of a population randomly. All the members have an equal opportunity to participate in the sample with this selection parameter.
  2. Non-probability sampling: In non-probability sampling, the researcher randomly chooses members for research. This sampling method is not a fixed or predefined selection process. This makes it difficult for all population elements to have equal opportunities to be included in a sample.

This blog discusses the various probability and non-probability sampling methods you can implement in any market research study.

LEARN ABOUT: Survey Sampling

Types of probability sampling with examples:

Probability sampling is a technique in which researchers choose samples from a larger population based on the theory of probability. This sampling method considers every member of the population and forms samples based on a fixed process.

For example, in a population of 1000 members, every member will have a 1/1000 chance of being selected to be a part of a sample. Probability sampling eliminates sampling bias in the population and allows all members to be included in the sample.

There are four types of probability sampling techniques:

Types of probability sampling

Uses of probability sampling

There are multiple uses of probability sampling:

Types of non-probability sampling with examples

The non-probability method is a sampling method that involves a collection of feedback based on a researcher or statistician’s sample selection capabilities and not on a fixed selection process. In most situations, the output of a survey conducted with a non-probable sample leads to skewed results, which may not represent the desired target population. But, there are situations, such as the preliminary stages of research or cost constraints for conducting research, where non-probability sampling will be much more useful than the other type.

Four types of non-probability sampling explain the purpose of this sampling method in a better manner:

Uses of non-probability sampling

Non-probability sampling is used for the following:

How do you decide on the type of sampling to use?

For any research, it is essential to choose a sampling method accurately to meet the goals of your study. The effectiveness of your sampling relies on various factors. Here are some steps expert researchers follow to decide the best sampling method.

Difference between probability sampling and non-probability sampling methods

We have looked at the different types of sampling methods above and their subtypes. To encapsulate the whole discussion, though, the significant differences between probability sampling methods and non-probability sampling methods are as below:

Probability Sampling MethodsNon-Probability Sampling Methods
Definition Probability Sampling is a sampling technique in which samples from a larger population are chosen using a method based on the theory of probability. Non-probability sampling is a sampling technique in which the researcher selects samples based on the researcher’s subjective judgment rather than random selection.
Alternatively Known as Random sampling method. Non-random sampling method
Population selection The population is selected randomly. The population is selected arbitrarily.
Nature The research is conclusive. The research is exploratory.
Sample Since there is a method for deciding the sample, the population demographics are conclusively represented. Since the sampling method is arbitrary, the population demographics representation is almost always skewed.
Time Taken Takes longer to conduct since the research design defines the selection parameters before the market research study begins. This type of sampling method is quick since neither the sample nor the selection criteria of the sample are undefined.
Results This type of sampling is entirely unbiased; hence, the results are also conclusive. This type of sampling is entirely biased, and hence the results are biased, too, rendering the research speculative.
Hypothesis In probability sampling, there is an underlying hypothesis before the study begins, and this method aims to prove the hypothesis. In non-probability sampling, the hypothesis is derived after conducting the research study.

Conclusion

Now that we have learned how different sampling methods work and are widely used by researchers in market research so that they don’t need to research the entire population to collect actionable insights, let’s go over a tool that can help you manage these insights.

QuestionPro understands the need for an accurate, timely, and cost-effective method to select the proper sample; that’s why we bring QuestionPro Software, a set of tools that allow you to efficiently select your target audience, manage your insights in an organized, customizable repository and community management for post-survey feedback.

Don’t miss the chance to elevate the value of research.